Determinants of Gemcitabine-Pemetrexed Synergism in Pancreatic Cancer Cell Lines

E. Giovannetti, V. Mey, R. Danesi, I. Mosca, M. Del Tacca

Division of Pharmacology and Chemotherapy, Department of Oncology, Transplants and Advanced Technologies in Medicine, University of Pisa, Italy

Pancreas Cancer 2004 International Symposium Tirrenia, Pisa, 24-26 April 2004
Mechanism of action of gemcitabine and pemetrexed

- Pemetrexed (MTA)
- FPGS
- Pemetrexed (Glu)
- dUMP
- TS
- Thymidylate biosynthesis

- PRPP + Glutamine
- purine de novo biosynthesis
- 10 CHO-FH₄
- GARFT
- 5-10CH₂-FH₄
- Folate metabolism
- GAR
- IMP
- HX + PRPP
- purine salvage biosynthesis
- Orotate
- UMP
- UMP

- Gemcitabine (dFdC)
- CDA
- dFdU
- Deoxycytidine
- pirimidine salvage biosynthesis
- dCK/5'NT
- dCMP
- dCDP
- CDP
- RR
- CDP
- dFdCDP
- dFdCTP
- dFdCMP
- (-)
- dFdCDP
- dFdCTP

- DNA

Adjei et al., J Clin Oncol 2000; 8:1748
Shih et al., Cancer Res 1997; 57:1116
Tonkinson et al., Cancer Res 1999; 59:3671
Tesei et al., Clin Cancer Res 2002; 8:233
Cytotoxicity and pharmacologic interaction between gemcitabine and pemetrexed

Capan-1

- dFdC (IC$_{50}$) = 4.75 µg/ml
- MTA (IC$_{50}$) = 7.33 µg/ml
- dFdC-MTA (IC$_{50}$) = 0.03 µg/ml
- MTA-dFdC (IC$_{50}$) = 0.02 µg/ml

MIA PaCa-2

- dFdC (IC$_{50}$) = 2.90 µg/ml
- MTA (IC$_{50}$) = 1.58 µg/ml
- dFdC-MTA (IC$_{50}$) = 0.12 µg/ml
- MTA-dFdC (IC$_{50}$) = 0.04 µg/ml

PANC-1

- dFdC (IC$_{50}$) = 42.21 µg/ml
- MTA (IC$_{50}$) = 2.42 µg/ml
- dFdC-MTA (IC$_{50}$) = 0.75 µg/ml
- MTA-dFdC (IC$_{50}$) = 0.09 µg/ml

Graphs:

- MIA PaCa-2
- PANC-1
- Capan-1

- Log [Drug] _µg/ml_
- % Cells surviving respect to control
- Combination Index (CI)
- Fraction affected
Cell cycle modulation by gemcitabine and pemetrexed

MIA PaCa-2

<table>
<thead>
<tr>
<th>Treatment</th>
<th>G1 (%)</th>
<th>S (%)</th>
<th>G2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>77.01</td>
<td>15.30</td>
<td>7.69</td>
</tr>
<tr>
<td>Gemcitabine</td>
<td>46.36</td>
<td>49.29</td>
<td>4.35</td>
</tr>
<tr>
<td>Pemetrexed</td>
<td>30.12</td>
<td>46.63</td>
<td>23.25</td>
</tr>
</tbody>
</table>

PANC-1

<table>
<thead>
<tr>
<th>Treatment</th>
<th>G1 (%)</th>
<th>S (%)</th>
<th>G2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>88.25</td>
<td>10.55</td>
<td>1.20</td>
</tr>
<tr>
<td>Gemcitabine</td>
<td>66.98</td>
<td>29.29</td>
<td>3.73</td>
</tr>
<tr>
<td>Pemetrexed</td>
<td>17.21</td>
<td>80.13</td>
<td>2.66</td>
</tr>
</tbody>
</table>

Capan-1

<table>
<thead>
<tr>
<th>Treatment</th>
<th>G1 (%)</th>
<th>S (%)</th>
<th>G2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>50.73</td>
<td>31.13</td>
<td>18.14</td>
</tr>
<tr>
<td>Gemcitabine</td>
<td>54.19</td>
<td>36.40</td>
<td>9.41</td>
</tr>
<tr>
<td>Pemetrexed</td>
<td>31.10</td>
<td>63.21</td>
<td>5.69</td>
</tr>
</tbody>
</table>

a Mean percent values of total number of cells examined in three independent experiments.
Induction of apoptosis by gemcitabine, pemetrexed and their combination

Columns, mean values obtained from three independent experiments; bars, SE
*Statistically significantly different from controls (P<0.05)
Modulation of dCK expression by pemetrexed

<table>
<thead>
<tr>
<th>Gene</th>
<th>MIA PaCa-2</th>
<th>PANC-1</th>
<th>Capan-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gemcitabine</td>
<td>12.29</td>
<td>53.43</td>
<td>29.90</td>
</tr>
<tr>
<td>+dCyd</td>
<td>86.11</td>
<td>503.97</td>
<td>272.53</td>
</tr>
<tr>
<td>+DEPC</td>
<td>10.15</td>
<td>28.03</td>
<td>13.71</td>
</tr>
<tr>
<td>+THU</td>
<td>7.54</td>
<td>10.52</td>
<td>9.40</td>
</tr>
</tbody>
</table>

*a Mean values ±SE of at least three independent experiments.

Gene expression (C_T)

Log [cDNA]

dCK expression (2^-ΔΔC_T)

MIA PaCa-2 PANC-1 Capan-1
Enhancement of dCK/RRM1×RRM2 expression ratio after pemetrexed treatment

- Gemcitabine IC₅₀ (µg/ml)
 - PANC-1
 - Capan-1
 - MIA PaCa-2

- dCK/RRM1×RRM2 expression ratio
 - Control
 - Pemetrexed

- $R^2 = 0.95$
Conclusions

Gemcitabine and pemetrexed were cytotoxic against MIA PaCa-2, PANC-1 and Capan-1 cells and the combination index demonstrated that the drug sequence showing the maximum degree of synergism was pemetrexed → gemcitabine in all cell lines.

Flow cytometric studies demonstrated that pemetrexed and gemcitabine enhanced cellular population in S phase in all cell lines.

Gemcitabine-pemetrexed combinations increased the occurrence of apoptosis.

Quantitative RT-PCR analysis showed that pemetrexed significantly enhanced dCK expression in all cell lines, while there was only a minor increase of RR expression.

These data provide evidence that the combination of gemcitabine and pemetrexed displays schedule-dependent synergistic cytotoxic activity against various pancreatic cancer cells, associated with favorable modulation of cell cycle, induction of apoptosis and inducible dCK gene expression.